English हिन्दी
Connect with us

Latest Science News

Odd-Even scheme had little impact on air pollution: study

Published

on

Odd-Even scheme had little impact on air pollution: study

~By Rayies Altaf

Air pollution is a serious problem in Delhi and vehicular traffic is generally thought to be the main culprit. But a new study done in the national capital has found that traffic density alone doesn’t have much impact on the amount or intensity of air pollution in the city. There are other environmental factors which play a vital role.

The study, conducted during implementation of traffic rationing policy – popularly known as `Odd-Even Scheme’ – implemented from January 1 to 15, 2016, found that there was hardly any impact on the characteristics and concentration of major air pollutants – particulate matter 2.5 (PM 2.5) and black carbon.

The average mass concentration of PM 2.5 and black carbon during the traffic rationing campaign was found to be much higher than expected. The concentration of PM 2.5 was higher than before the scheme was implemented. The average concentration of black carbon was found to be more than before the scheme came into effect as well as after the scheme ended. Both the cases show results, which are against the expectation of a decrease.

The PM 2.5 concentration was 163.51 microgram per cubic meter before, 186.98 microgram per cubic meter during and 197.45 microgram per cubic meter after the campaign. The concentration of BC was 14.01 microgram per cubic meter before, 19.87 microgram per cubic meter during and 17.79 microgram per cubic meter after the scheme ended. The unexpected results seem to be on account of lack of wind, low humidity and probable rise in the use of non-maintained vehicles during the campaign period.

“The daily variation in meteorological parameters makes it very difficult to delineate the effect of traffic density on PM concentration. Although there may be a reduction in the level of few pollutants, the decrease in the number of vehicles was not sufficient to make a visible change in PM characteristics over Delhi,” the study has concluded.

The positive impact was seen in terms of reduction in concentration of some harmful chemical elements like arsenic, copper, lead, phosphorus, magnesium, calcium, silica, sodium, chlorine, potassium, chromium and iron. These elements when inhaled for very long periods are known to cause many diseases in both humans and animals. Lead, for instance, is a known neurotoxin and is believed to cause adverse effects on pregnant women and children.

“An important aspect of the study is that it has highlighted the significance of surface winds in controlling air quality. The fact that winds do not blow much in Delhi means that we might need to rethink our urban construction planning. More extensive studies are needed in this direction to understand the dynamics and patterns of air pollution in local as well as broader context,” Prof AP Dimri, a member of the research team, explained while speaking to Indian Science Wire.

Delhi particularly suffers from high levels of particulate matter (especially PM 2.5) and black carbon. PM 2.5 refers to atmospheric particulate matter, which have a diameter of less than 2.5 micrometers – about 3% the diameter of a human hair. Such extremely small sized particulate matter tends to stay longer in the air than heavier particles, thereby increasing the chances of humans and animals inhaling them. The PM 2.5 directly enters living tissues through lungs, causing several respiratory and cardiovascular diseases. Black carbon is the sooty black material emitted from diesel engines of vehicles and holds a large portion of particulate matter in itself.

The research team included Vikas Goel, Sumit Kumar Mishra, Ajit Ahlawat, N. Vijayan and R.K. Kotnala, Chhemendra Sharma and S.R. Radhakrishnan (Environmental Sciences and Biomedical Metrology Division, National Physical Laboratory), besides Dr. Dimri, who is from School of Environmental Sciences at JNU. The study results have been published in journal Current Science. (India Science Wire)

India News

NASA astronauts Sunita Williams, Nick Hague step outside spacecraft after 7 months

Williams’ extensive experience continues to shine during these demanding missions, highlighting the resilience and skill required for space exploration.

Published

on

NASA astronauts Sunita Williams and Nick Hague stepped outside the International Space Station (ISS) today for a vital mission, marking Williams’ eighth spacewalk and Hague’s fourth. Their objective focused on essential repairs, showcasing their expertise and commitment to the job.

The spacewalk, designated US Spacewalk 91, took place on January 16, 2025. This was Williams’ first spacewalk in 12 years, while Hague added a fourth accomplishment to his impressive track record. Together, they initiated a six-and-a-half-hour operation aimed at repairing critical systems on the ISS.

Their tasks included maintaining equipment for the station’s orientation, upgrading the Neutron Star Interior Composition ExploreR (NICER) telescope, and replacing a reflector on a docking adapter, as well as preparing tools for future work on the ISS. Williams, an accomplished astronaut, expressed her enthusiasm as she exited the station by radioing, “I’m coming out,” signalling her return to spacewalking duties.

Williams and her fellow astronaut Butch Wilmore were initially scheduled to return in June 2024 after a week-long mission aboard Boeing’s Starliner, but technical issues with the spacecraft forced an extended stay. NASA has since rescheduled their return for March or April. Additionally, safety concerns related to SpaceX’s Crew-10 mission have further delayed their plans. Nevertheless, the astronauts have adjusted well to life aboard the ISS.

NASA’s Flight Director, Nicole McElroy, commended the crew for their thorough preparations for the spacewalks. “The crew has studied the tasks and is fully ready,” McElroy noted.

https://twitter.com/Space_Station/status/1879916338527002938

Williams will join Wilmore for another spacewalk next week, where they will focus on removing an antenna assembly and collecting surface samples to study microorganisms on the station’s exterior. They will also prepare a spare elbow joint for the Canadarm2 robotic arm. NASA emphasizes that these activities are crucial for the upkeep of the station, with each spacewalk anticipated to last around six and a half hours.

Williams’ extensive experience continues to shine during these demanding missions, highlighting the resilience and skill required for space exploration.

Continue Reading

India News

ISRO successfully completes SpaDeX docking experiment, joins global elite in space technology

Published

on

ISRO SpaDeX mission demonstrating satellite docking for India’s space station

The Indian Space Research Organisation (ISRO) has successfully conducted the SpaDeX docking experiment, marking a significant advancement in India’s space capabilities. Early on Thursday, January 16, 2025, ISRO joined the ranks of the USA, Russia, and China by mastering the complex technology required for spacecraft docking in orbit.

Launched on December 30, 2024, by the PSLV C60, the two satellites involved in the experiment, SDX01 (Chaser) and SDX02 (Target), reached their designated positions and executed a flawless docking maneuver. This operation was closely monitored by the team at ISRO’s Mission Operations Complex (MOX) at the Telemetry, Tracking, and Command Network (ISTRAC).

Celebrating this achievement, ISRO shared on social media, “Docking Success Spacecraft docking successfully completed! A historic moment. India became the 4th country to achieve successful space docking. Congratulations to the entire team!”

Following the successful docking, ISRO has maintained control over the newly unified satellite structure and plans to conduct undocking and power transfer tests in the forthcoming days. This mission, beyond its immediate success, aims to lay the groundwork for more ambitious endeavors such as manned lunar missions, sample returns from the moon, and potentially an Indian Space Station.

The SpaDeX mission also serves as a demonstration of vital technologies like electrical power transfer between docked spacecraft, which will be crucial for future in-space robotic operations and composite spacecraft management post-undocking.

ISRO stated that the next steps involve validating the docking process through ground simulations and ensuring the mission’s objectives continue smoothly with subsequent experiments planned over the mission’s expected life span of up to two years.

This milestone not only demonstrates ISRO’s growing capabilities in space technology but also promises to bolster India’s position in future international space exploration initiatives.

Continue Reading

Latest Science News

SpaDeX Mission: A key milestone in India’s path to the Bharatiya Antriksh Station

Published

on

ISRO SpaDeX mission demonstrating satellite docking for India’s space station

In a historic step towards establishing its own space station, the Indian Space Research Organisation (ISRO) launched the Space Docking Experiment (SpaDeX) from Sriharikota on December 30, 2024. This groundbreaking mission aims to demonstrate India’s capability to dock two satellites in orbit, a feat achieved so far only by the United States, Russia, and China.

The SpaDeX mission, executed aboard the reliable PSLV-C60 rocket, successfully deployed two spacecraft, SDX01 and SDX02, into a low-Earth orbit approximately 475 kilometers above Earth. Over the following days, these satellites, designated as the “Chaser” and the “Target,” will perform precise maneuvers for docking, undocking, and interlocking, with real-time control by ISRO scientists in Bengaluru.

A leap towards Bharatiya Antriksh Station

SpaDeX is integral to India’s ambitious space station project, the Bharatiya Antriksh Station, slated for completion by 2035. The mission marks a significant step in developing technologies for rendezvous and docking, essential for constructing and operating a space station.

Currently, only two space stations exist—the International Space Station (ISS), a collaboration between NASA, Roscosmos, and ESA, and China’s Tiangong Space Station. With Bharatiya Antriksh Station, India aspires to join this elite league.

Critical objectives of SpaDeX

The primary goals of SpaDeX include:

  1. Demonstrating docking technology to ensure seamless interlocking and pressure checks between spacecraft.
  2. Electric power transfer between docked spacecraft, paving the way for advanced in-space operations.
  3. Composite spacecraft control, enabling remote and automated management from mission control.
  4. Payload experiments post-undocking, ensuring optimal utilization of resources.

These advancements will also enhance the docking capability of India’s Reusable Launch Vehicle (RLV), akin to NASA’s space shuttles, for future missions.

Microgravity experiments with POEM-4

In tandem with SpaDeX, ISRO is conducting microgravity experiments using the PSLV’s fourth stage, termed POEM-4 (PSLV Orbital Experimental Module-4). This platform hosts 24 payloads, including a robotic arm to simulate debris capture—a crucial capability for future space station operations.

The microgravity experiments will benefit academia, startups, and ISRO’s own research centers, providing invaluable insights for extended-duration missions.

Inspiration from “Interstellar”

Docking in space is a complex maneuver, vividly dramatized in the sci-fi film Interstellar. Similar to the movie’s high-stakes scenario, ISRO’s mission involves the Chaser spacecraft approaching and interlocking with the Target while both orbit Earth at high speeds.

Pioneering India’s space future

The SpaDeX mission is not just a technological milestone but a testament to India’s growing prowess in space exploration. If successful, it will cement India’s position as a leader in cutting-edge space technology, bringing the nation closer to realizing its space station dream.

By leveraging such innovations, ISRO continues to push boundaries, inspiring the next generation of scientists and contributing to global advancements in space research.

Continue Reading

Trending

© Copyright 2022 APNLIVE.com